Краткое пояснение: Решаем каждое уравнение по отдельности, используя тригонометрические формулы и алгебраические преобразования.
620) 1) \[\sin^2 x = \frac{1}{4}\]
\[\sin x = \pm \frac{1}{2}\]
\[x = (-1)^n \frac{\pi}{6} + \pi n, \quad n \in \mathbb{Z}\]
621) 1) \[2\cos^2 x - \sin x + 1 = 0\]
\[2(1 - \sin^2 x) - \sin x + 1 = 0\]
\[2 - 2\sin^2 x - \sin x + 1 = 0\]
\[-2\sin^2 x - \sin x + 3 = 0\]
\[2\sin^2 x + \sin x - 3 = 0\]
Пусть \(y = \sin x\), тогда:
\[2y^2 + y - 3 = 0\]
\[D = 1^2 - 4 \cdot 2 \cdot (-3) = 1 + 24 = 25\]
\[y_1 = \frac{-1 + 5}{4} = 1, \quad y_2 = \frac{-1 - 5}{4} = -\frac{3}{2}\]
\[\sin x = 1 \Rightarrow x = \frac{\pi}{2} + 2\pi n, \quad n \in \mathbb{Z}\]
\[\sin x = -\frac{3}{2}\] (не имеет решений, т.к. \(|\sin x| \le 1\))
622) 1) \[\tan^2 x = 2\]
\[\tan x = \pm \sqrt{2}\]
\[x = \arctan(\pm \sqrt{2}) + \pi n, \quad n \in \mathbb{Z}\]
623) 1) \[1 + 7\cos^2 x = 3\sin 2x\]
\[1 + 7\cos^2 x = 6\sin x \cos x\]
\[\sin^2 x + \cos^2 x + 7\cos^2 x = 6\sin x \cos x\]
\[\sin^2 x - 6\sin x \cos x + 8\cos^2 x = 0\]
Разделим обе части уравнения на \(\cos^2 x\) (если \(\cos x = 0\), то \(\sin x = 0\), что невозможно, т.к. \(\sin^2 x + \cos^2 x = 1\)):
\[\tan^2 x - 6\tan x + 8 = 0\]
Пусть \(y = \tan x\), тогда:
\[y^2 - 6y + 8 = 0\]
\[D = (-6)^2 - 4 \cdot 1 \cdot 8 = 36 - 32 = 4\]
\[y_1 = \frac{6 + 2}{2} = 4, \quad y_2 = \frac{6 - 2}{2} = 2\]
\[\tan x = 4 \Rightarrow x = \arctan(4) + \pi n, \quad n \in \mathbb{Z}\]
\[\tan x = 2 \Rightarrow x = \arctan(2) + \pi n, \quad n \in \mathbb{Z}\]
624) 1) \[\sqrt{3} \cos x + \sin x = 0\]
\[\sin x = -\sqrt{3} \cos x\]
Разделим обе части уравнения на \(\cos x\) (если \(\cos x = 0\), то \(\sin x = 0\), что невозможно, т.к. \(\sin^2 x + \cos^2 x = 1\)):
\[\tan x = -\sqrt{3}\]
\[x = -\frac{\pi}{3} + \pi n, \quad n \in \mathbb{Z}\]
625) 1) \[\sin x - \cos x = 1\]
\[\sin x = \cos x + 1\]
\[\sin^2 x = (\cos x + 1)^2\]
\[1 - \cos^2 x = \cos^2 x + 2\cos x + 1\]
\[2\cos^2 x + 2\cos x = 0\]
\[2\cos x(\cos x + 1) = 0\]
\[\cos x = 0 \Rightarrow x = \frac{\pi}{2} + \pi n, \quad n \in \mathbb{Z}\]
\[\cos x = -1 \Rightarrow x = \pi + 2\pi n, \quad n \in \mathbb{Z}\]
Проверим:
\[x = \frac{\pi}{2} + \pi n\]
Если \(n = 2k\), то \(x = \frac{\pi}{2} + 2\pi k\), тогда \(\sin x = 1\) и \(\cos x = 0\), следовательно \(1 - 0 = 1\) (верно).
Если \(n = 2k+1\), то \(x = \frac{\pi}{2} + \pi(2k+1) = \frac{3\pi}{2} + 2\pi k\), тогда \(\sin x = -1\) и \(\cos x = 0\), следовательно \(-1 - 0 = 1\) (неверно).
\[x = \pi + 2\pi n\]
Тогда \(\sin x = 0\) и \(\cos x = -1\), следовательно \(0 - (-1) = 1\) (верно).
626) 1) \[\cos x = \cos 3x\]
\[\cos 3x - \cos x = 0\]
\[-2 \sin \frac{3x + x}{2} \sin \frac{3x - x}{2} = 0\]
\[-2 \sin 2x \sin x = 0\]
\[\sin 2x = 0 \Rightarrow 2x = \pi n \Rightarrow x = \frac{\pi n}{2}, \quad n \in \mathbb{Z}\]
\[\sin x = 0 \Rightarrow x = \pi n, \quad n \in \mathbb{Z}\]
627) 1) \[\cos 3x - \cos 5x = \sin 4x\]
\[-2 \sin \frac{3x + 5x}{2} \sin \frac{3x - 5x}{2} = \sin 4x\]
\[-2 \sin 4x \sin (-x) = \sin 4x\]
\[2 \sin 4x \sin x = \sin 4x\]
\[2 \sin 4x \sin x - \sin 4x = 0\]
\[\sin 4x(2 \sin x - 1) = 0\]
\[\sin 4x = 0 \Rightarrow 4x = \pi n \Rightarrow x = \frac{\pi n}{4}, \quad n \in \mathbb{Z}\]
\[2 \sin x - 1 = 0 \Rightarrow \sin x = \frac{1}{2} \Rightarrow x = (-1)^n \frac{\pi}{6} + \pi n, \quad n \in \mathbb{Z}\]
628) 1) \[(\tan x - \sqrt{3})\left(2 \sin \frac{x}{12} + 1\right) = 0\]
\[\tan x - \sqrt{3} = 0 \Rightarrow \tan x = \sqrt{3} \Rightarrow x = \frac{\pi}{3} + \pi n, \quad n \in \mathbb{Z}\]
\[2 \sin \frac{x}{12} + 1 = 0 \Rightarrow \sin \frac{x}{12} = -\frac{1}{2} \Rightarrow \frac{x}{12} = (-1)^n \left(-\frac{\pi}{6}\right) + \pi n \Rightarrow x = (-1)^{n+1} 2\pi + 12\pi n, \quad n \in \mathbb{Z}\]
629) 1) \[\sqrt{3} \sin x \cos x = \sin^2 x\]
\[\sin x(\sqrt{3} \cos x - \sin x) = 0\]
\[\sin x = 0 \Rightarrow x = \pi n, \quad n \in \mathbb{Z}\]
\[\sqrt{3} \cos x - \sin x = 0 \Rightarrow \sin x = \sqrt{3} \cos x \Rightarrow \tan x = \sqrt{3} \Rightarrow x = \frac{\pi}{3} + \pi n, \quad n \in \mathbb{Z}\]
630) 1) \[2\sin^2 x = 1 + \frac{1}{3} \sin 4x\]
\[2\sin^2 x = 1 + \frac{2}{3} \sin 2x \cos 2x\]
\[1 - \cos 2x = 1 + \frac{2}{3} \sin 2x \cos 2x\]
\[\cos 2x + \frac{2}{3} \sin 2x \cos 2x = 0\]
\[\cos 2x\left(1 + \frac{2}{3} \sin 2x\right) = 0\]
\[\cos 2x = 0 \Rightarrow 2x = \frac{\pi}{2} + \pi n \Rightarrow x = \frac{\pi}{4} + \frac{\pi n}{2}, \quad n \in \mathbb{Z}\]
\[1 + \frac{2}{3} \sin 2x = 0 \Rightarrow \sin 2x = -\frac{3}{2}\] (не имеет решений, т.к. \(|\sin 2x| \le 1\))
631) 1) \[2\sin 2x - 3(\sin x + \cos x) + 2 = 0\]
\[4\sin x \cos x - 3(\sin x + \cos x) + 2 = 0\]
Пусть \(y = \sin x + \cos x\), тогда \(y^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x = 1 + 2\sin x \cos x\), следовательно \(2\sin x \cos x = y^2 - 1\).
Тогда:
\[2(y^2 - 1) - 3y + 2 = 0\]
\[2y^2 - 2 - 3y + 2 = 0\]
\[2y^2 - 3y = 0\]
\[y(2y - 3) = 0\]
\[y = 0 \Rightarrow \sin x + \cos x = 0 \Rightarrow \tan x = -1 \Rightarrow x = -\frac{\pi}{4} + \pi n, \quad n \in \mathbb{Z}\]
\[2y - 3 = 0 \Rightarrow y = \frac{3}{2} \Rightarrow \sin x + \cos x = \frac{3}{2}\]
\[\sqrt{2} \sin\left(x + \frac{\pi}{4}\right) = \frac{3}{2}\]
\[\sin\left(x + \frac{\pi}{4}\right) = \frac{3}{2\sqrt{2}} = \frac{3\sqrt{2}}{4} \approx 1.06\] (не имеет решений, т.к. \(|\sin x| \le 1\))
Проверка за 10 секунд: Убедись, что найденные решения соответствуют исходным уравнениям. Подставь значения и проверь!